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Abstract 11 

Prediction of spatio-temporal chaotic systems is important in various fields, such as Numerical 12 

Weather Prediction (NWP). While data assimilation methods have been applied in NWP, machine 13 

learning techniques, such as Reservoir Computing (RC), are recently recognized as promising tools to 14 

predict spatio-temporal chaotic systems. However, the sensitivity of the skill of the machine learning 15 

based prediction to the imperfectness of observations is unclear. In this study, we evaluate the skill of 16 

RC with noisy and sparsely distributed observations. We intensively compare the performances of RC 17 

and Local Ensemble Transform Kalman Filter (LETKF) by applying them to the prediction of the 18 
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Lorenz 96 system. Although RC can successfully predict the Lorenz 96 system if the system is 19 

perfectly observed, we find that RC is vulnerable to observation sparsity compared with LETKF. To 20 

overcome this limitation of RC, we propose to combine LETKF and RC. In our proposed method, the 21 

system is predicted by RC that learned the analysis time series estimated by LETKF. Our proposed 22 

method can successfully predict the Lorenz 96 system using noisy and sparsely distributed 23 

observations. Most importantly, our method can predict better than LETKF when the process-based 24 

model is imperfect. 25 

 26 

1. Introduction 27 

In Numerical Weather Prediction (NWP), it is required to obtain the optimal estimation of atmospheric 28 

state variables by observations and process-based models which are both imperfect. Observations of 29 

atmospheric states are sparse and noisy, and numerical models inevitably include biases. In addition, 30 

models used in NWP are known to be chaotic, which makes the prediction substantially difficult. To 31 

accurately predict the future atmospheric state, it is important to develop methods to predict spatio-32 

tempral chaotic dynamical systems from imperfect observations and models. 33 

 34 

Traditionally, data assimilation methods have been widely used in geosciences and NWP systems. 35 

Data assimilation is a generic term of approaches to estimate the state from observations and model 36 

https://doi.org/10.5194/gmd-2020-211
Preprint. Discussion started: 21 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 3 

outputs based on their errors. The state estimated by data assimilation is used as the initial value, and 37 

the future state is predicted by models alone. Data assimilation is currently adopted in operational 38 

NWP systems. Many data assimilation frameworks have been proposed, e.g. 4D variational methods 39 

(4D-VAR; Bannister, 2017), Ensemble Kalman Filter (EnKF; Houtekamer & Zhang, 2016), or their 40 

derivatives, and they have been applied to many kinds of weather prediction tasks, such as the 41 

prediction of short-term rainfall events (e.g. Sawada et al., 2019; Yokota et al., 2018), and severe 42 

storms (e.g. Zhang et al., 2016). Although data assimilation can efficiently estimate the unobservable 43 

state variables from noisy observations, the prediction skill is degraded if the model has large biases. 44 

 45 

On the other hand, model-free prediction methods based on machine learning have been receiving 46 

much attention recently. Many previous studies have successfully applied machine learning to predict 47 

chaotic dynamics. Vlachas et al. (2018) successfully applied Long-Short Term Memory (LSTM; 48 

Hochreiter & Schmidhuber, 1997) to predict the dynamics of the Lorenz96 model, Kuramoto-49 

Sivashinski Equation, and the barotropic climate model which is a simple atmospheric circulation 50 

model. Asanjan et al. (2018) showed that LSTM can accurately predict the future precipitation by 51 

learning satellite observation data. Nguyen & Bae (2020) successfully applied LSTM to generate area-52 

averaged precipitation prediction for hydrological forecasting. 53 

 54 

https://doi.org/10.5194/gmd-2020-211
Preprint. Discussion started: 21 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 4 

In addition to LSTM, Reservoir Computing (RC), which was first introduced by Jaeger & Haas (2004), 55 

has been found to be suitable to predict spatio-temporal chaotic systems. Pathak et al. (2017) 56 

successfully applied RC to predict the dynamics of Lorenz equation and Kuramoto-Sivashinski 57 

Equation. Lu et al. (2017) showed that RC can be used to estimate state variables from sparse 58 

observations if the whole system was perfectly observed as training data. Chattopadhyay et al. (2019) 59 

revealed that RC can predict the dynamics of the Lorenz 96 model more accurately than LSTM and 60 

Artificial Neural Network. In addition to the accuracy, RC also has an advantage in computational 61 

costs. RC can learn the dynamics only by training a single matrix just once, while other neural 62 

networks have to train numerous parameters and need many iterations (Lu et al., 2017). Thanks to this 63 

feature, the computational costs needed to train RC is cheaper than LSTM and Artificial Neural 64 

Network. 65 

 66 

However, Vlachas et al. (2020) revealed that the prediction accuracy of RC is degraded when all of 67 

the state variables cannot be observed. It can be a serious problem since the observation sparsity is 68 

often the case in geosciences and the NWP systems. Brajard et al. (2020) pointed out this issue and 69 

successfully trained the Convolutional Neural Network with sparse observations, by combining with 70 

EnKF. However, their method needs to iterate the data assimilation and training, which is 71 

computationally expensive and infeasible toward the real-world problem. Dueben & Bauer (2018) 72 
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mentioned that the spatio-temporal heterogeneity of observation data made it difficult to train machine 73 

learning models, and they suggested to use the model or reanalysis as training data. Weyn et al. (2019) 74 

successfully trained machine learning models using the atmospheric reanalysis data. 75 

 76 

We aim to propose the novel methodology to predict spatio-temporal chaotic systems from imperfect 77 

observations and models. First, we reveal the limitation of the stand-alone use of RC under realistic 78 

situations (i.e., imperfect observations and models). Then, we propose a new method to maximize the 79 

potential of RC to predict chaotic systems from imperfect models and observations, which is even 80 

computationally feasible. As Dueben & Bauer (2018) proposed, we make RC learn the analysis data 81 

series generated by a data assimilation method. Our new method can accurately predict from imperfect 82 

observations. Most importantly, we found that our proposed method is more robust to model biases 83 

than the stand-alone use of data assimilation methods. 84 

 85 

2. Methods 86 

2.1 Lorenz 96 model and OSSE 87 

We used a low dimensional spatio-temporal chaotic model, the Lorenz 96 model (L96), to perform 88 

experiments with various parameter settings. L96 is a model introduced by Lorenz & Emanuel (1998) 89 

and has been commonly used in data assimilation studies (e.g. Kotsuki et al., 2017; Miyoshi, 2005; 90 
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Penny, 2014; Raboudi et al., 2018). L96 is recognized as a good testbed for the operational NWP 91 

problems (Penny, 2014). 92 

 93 

In this model, we consider a ring structured and 𝑚 dimensional discrete state space 𝑥1, 𝑥2, … , 𝑥𝑚   94 

(that is, 𝑥𝑚 is adjacent to 𝑥1), and define the system dynamics as follows: 95 

𝑑𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2) 𝑥𝑖−1 − 𝑥𝑖 + 𝐹 (1) 96 

where 𝐹 stands for the force parameter. Each term of this equation corresponds to advection, damping 97 

and forcing respectively. It is known that various settings of state dimension 𝑚, forcing term 𝐹 and 98 

initial values result in chaotic solutions. The time width Δ𝑡 = 0.2 corresponds to one day in real 99 

atmospheric motion from the view of Lyapunov time (Miyoshi, 2005). 100 

 101 

As we use this conceptual model, we cannot obtain any observational data or “true” phenomena that 102 

correspond to the model. Instead, we adopted Observing System Simulation Experiment (OSSE). We 103 

first prepared a time series by integrating equation (1) and regarded it as the “true” dynamics (called 104 

Nature Run). Observation data can be calculated from this time series adding some perturbation: 105 

𝒚𝑶 = 𝑯𝒙 + 𝝐 (2) 106 

where 𝒚𝑶 ∈ ℝℎ   is the observation value, 𝑯  is the 𝑚 × ℎ  observation matrix, 𝝐 ∈ ℝℎ   is the 107 

observational error whose each element is independent and identically distributed on Gaussian 108 
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distribution 𝑁(0, 𝑒) for observation error 𝑒. 109 

 110 

In each experiment, the form of L96 used to generate Nature Run is unknown, and the model used to 111 

make prediction can be different from that for Nature Run. The difference between the model used for 112 

Nature Run and that used for prediction corresponds to the model’s bias in the context of NWP.  113 

 114 

2.2 Local Ensemble Transform Kalman Filter 115 

We used the Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007) as the data 116 

assimilation method in this study. LETKF is one of the ensemble-based data assimilation methods, 117 

which is considered to be applicable to the NWP problems in many previous studies (Sawada et al., 118 

2019; Yokota et al., 2018). LETKF is also used for the operational NWP in some countries (e.g. Schraff 119 

et al., 2016). 120 

 121 

LETKF and the family of ensemble Kalman filters have two steps; forecast and analysis. The forecast 122 

step makes the prediction from the analysis variables of current time to the time when the next 123 

observation is obtained (this time width is called “assimilation window”). Considering the stochastic 124 

error in the model, system dynamics can be represented as follows (hereafter the subscript 𝑘 stands 125 

for the variable at time 𝑘, and the time width of 𝑘 corresponds to the assimilation window): 126 
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𝒙𝒌
𝑓

= 𝓜(𝒙𝒌−𝟏
𝒂 ) + 𝜼𝒌, 𝜼𝒌~𝑁(𝟎, 𝑸) (3) 127 

where 𝒙𝒌
𝒇

∈ ℝ𝒎  is the forecast variables, 𝒙𝒌−𝟏
𝒂 ∈ ℝ𝒎  is the analysis variables, ℳ: ℝ𝑚 →  ℝ𝑚  is 128 

the model dynamics operator, 𝜼 ∈ ℝ𝒎 is the stochastic error and 𝑁(𝟎, 𝑸)  means the Gaussian 129 

distribution with mean 0 and 𝑛 × 𝑛 covariance matrix 𝑸. Using the computed state vector 𝒙𝒌
𝒇

, 130 

observation variables can be estimated as follows: 131 

𝒚𝑘
𝑓

= 𝓗 (𝒙𝒌
𝒇

) + 𝝐𝒌, 𝝐𝒌~𝑁(𝟎, 𝑹) (4) 132 

where 𝒚𝒇 ∈ ℝ𝒉 is the estimated observation value, ℋ: ℝ𝒎 → ℝ𝒉 is the observation operator and 133 

𝝐 ∈ ℝ𝒉 is the observation error extracted from 𝑁(𝟎, 𝑹).  Since the error in the model is assumed to 134 

follow the Gaussian distribution, forecasted state 𝒙𝒇 can also be considered as a random variable 135 

from the Gaussian distribution if ℳ is linear. In this situation, the probability distribution of 𝒙𝒇 136 

(and also 𝒙𝒂) can be parametrized by mean 𝒙𝒇̅̅ ̅ (𝒙𝒌
𝒂̅̅ ̅,) and covariance matrix 𝑷𝒇 (𝑷𝒌

𝒂). Their temporal 137 

evolution can be calculated based on equation (3) as follows: 138 

𝒙𝒌+𝟏

𝒇̅̅ ̅̅ ̅̅
= 𝑴𝒙𝒌

𝒂̅̅ ̅, 𝑷𝒌
𝒇

= 𝑴𝑷𝒌
𝒂𝑴𝑇 + 𝑸 (5) 139 

where 𝑀  is the 𝑚 × 𝑚 matrix representation of ℳ . Hereafter the means of 𝒙𝒇 and 𝒙𝒂  are 140 

expressed without overlines for convenience. 141 

 142 

Next, in the analysis step, this forecast state is updated using actual observation 𝒚𝒌
𝒐. 𝒙𝒌

𝒂 and 𝑷𝒌
𝒂 are 143 

generated as follows: 144 
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𝒙𝒌
𝒂 = 𝒙𝒌

𝒇
+ 𝑲𝒌 (𝒚𝒐 − 𝑯𝒙𝒌

𝒇
) , 𝑷𝒌

𝒂 = (𝑰 − 𝑲𝒌𝑯)𝑷𝒌
𝒇

  145 

𝑲𝒌 = 𝑷𝒌
𝒇

𝑯𝑻 (𝑯𝑷𝒌
𝒇

𝑯𝑻 + 𝑹)
−1

(6) 146 

where 𝑯 is the linear observation operator of equation (4). This method is called Kalman Filter. 147 

Kalman Filter is a good approximation when the dynamics is linear. However, it is difficult to apply 148 

it to nonlinear and large problems. If either the model operator ℳ or observation operator ℋ is 149 

nonlinear, we cannot directly use this method. If the state space dimension 𝑛 is high, it is difficult to 150 

keep 𝑛 × 𝑛 covariance matrix 𝑷 on the memory.  151 

 152 

One of the methods that solve these problems is EnKF. EnKF uses an ensemble of state variables to 153 

represent the probability distribution. The forecast step of equation (5) then becomes as follows: 154 

𝒙𝒌
𝒇,(𝒊)

= 𝓜 (𝒙𝒌−𝟏
𝒂,(𝒊)

) , 𝑷𝒌
𝒇

=
1

𝑁𝑒 − 1
𝑿𝒌

𝒇
(𝑿𝒌

𝒇
)

𝑻
(7) 155 

where 𝒙𝒌
𝒇,(𝒊)

 is the 𝑖th ensemble member of forecast value at time 𝑘, 𝑁𝑒 is the number of ensemble 156 

members and 𝑿𝒌
𝒇
 is the matrix whose 𝑖th column is the deviation of the 𝑖th ensemble member from 157 

the ensemble mean.  158 

 159 

The analysis step of EnKF has some variants including LETKF. LETKF first determines the mean and 160 

covariance of the analysis ensemble, 𝒙𝒌
𝒂̅̅ ̅ 𝑎𝑛𝑑 𝑷𝒌

𝒂, and then computes the analysis ensemble. As the 161 

derivation of equation (6), we get 𝒙𝒌
𝒂̅̅ ̅ and 𝑷𝒌

𝒂 from forecast ensemble as follows: 162 
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𝒘𝒌
𝒂̅̅ ̅̅ = �̃�𝒌

𝒂 (𝑯𝑿𝒌
𝒇

)
𝑻

𝑹−𝟏 (𝒚𝒐 − 𝑯𝒙
𝒌
𝒇̅̅ ̅

)

�̃�𝒇
𝒂 = [(𝒌 − 𝟏)𝑰 + (𝑯𝑿𝒌

𝒇
)

𝑻

𝑹−𝟏𝑯𝑿𝒌

𝒇
]

−𝟏

𝒙𝒌
𝒂̅̅ ̅ = 𝒙𝒌

𝒇̅̅ ̅
+ 𝑿𝒌

𝒇
𝒘𝒌

𝒂̅̅ ̅̅

𝑷𝒌
𝒂 = 𝑿𝒌

𝒇
�̃�𝒌

𝒂 (𝑿𝒌

𝒇
)

𝑻

(8)
 163 

where 𝒘𝒌
𝒂, �̃�𝒇

𝒂 stands for the mean and covariance of the analysis ensemble calculated in the ensemble 164 

subspace. As equation (7), we can consider the analysis covariance as the product of the analysis 165 

ensemble matrix: 166 

𝑷𝒌
𝒂 =

1

𝑁𝑒 − 1
𝑿𝒌

𝒂(𝑿𝒌
𝒂)𝑻 (9) 167 

where 𝑿𝒌
𝒂 is the matrix whose 𝑖th column is the variation of the 𝑖th ensemble member from the 168 

mean for the analysis ensemble. Therefore, decomposing �̃�𝒌
𝒂 of equation (8) into square root, we can 169 

get each analysis ensemble member at time 𝑘 as follows: 170 

𝑾𝒌
𝒂(𝑾𝒌

𝒂)𝑻 = �̃�𝒌
𝒂, 𝒙𝒌

𝒂 = √𝑁𝑒 − 1 𝑿𝒌
𝒇

𝒘𝒌
𝒂 (10) 171 

where 𝒘𝒌
𝒂  is the 𝑖 th column of 𝑾𝒌

𝒂  in the first equation. A covariance inflation parameter is 172 

multiplied to take measures for the tendency of data assimilation to underestimate the uncertainty of 173 

state estimate. See Hunt et al. (2007) for more detailed derivation. Now, we can return to the equation 174 

(7) and iterate forecast and analysis step. 175 

 176 

As in the real application, we consider the situation that the observations are not available in the 177 

prediction period. Predictions are made by the model alone, using the latest analysis state variables as 178 
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the initial condition. This way of making prediction is called “Extended Forecast”, and we call this 179 

prediction “LETKF-Ext” in this study. 180 

 181 

2.3 Reservoir Computing 182 

We use Reservoir Computing (RC) as the machine learning framework. RC is a type of Recurrent 183 

Neural Network, which has a single hidden layer called reservoir. Figure 1 shows the architecture. As 184 

mentioned in the Section 1, the previous works have shown that RC can predict the dynamics of spatio-185 

temporal chaotic systems. 186 

 187 

The state of the reservoir layer at timestep 𝑘 is represented as a vector 𝒓𝒌 ∈ ℝ𝑫𝒓, which evolves 188 

given the input vector 𝒖𝒌 ∈ ℝ𝒎 as follows: 189 

𝒓𝑘+1 = tanh[𝑨𝒓𝑘 + 𝑾𝒊𝒏𝒖𝑘] (11) 190 

where 𝑾𝒊𝒏 is the 𝐷𝑟 × 𝑀 input matrix which maps the input vector to the reservoir space, and 𝑨 191 

is the 𝐷𝑟 × 𝐷𝑟  adjacency matrix of the reservoir which determines the reservoir dynamics. 𝑾𝒊𝒏 192 

should be determined to have only one nonzero component in each row, and each nonzero component 193 

is extracted from uniform distribution of [−𝑎, 𝑎] for some parameter 𝑎. 𝑨 has a proportion of 𝑑 194 

nonzero components with random values from uniform distribution, and it is normalized to have the 195 

maximum eigenvalue 𝜌. The reservoir size 𝐷𝑟 should be determined based on the size of the state 196 
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space. From the reservoir state, we can compute the output vector 𝑣 as follows: 197 

𝒗𝑘 = 𝑾𝒐𝒖𝒕𝒇(𝒓𝒌) (12) 198 

where 𝑾𝒐𝒖𝒕  is the 𝑀 × 𝐷𝑟   output matrix which maps the reservoir state to the state space, and 199 

𝒇: ℝ𝐷𝑟 → ℝ𝐷𝑟  is the operator for nonlinear transformation. The nonlinear transformation is essential 200 

for the accurate prediction (Chattopadhyay et al., 2019). It is important that 𝑨 and 𝑾𝒊𝒏 are fixed and 201 

only 𝑾𝒐𝒖𝒕 will be trained. Therefore, the computational cost required to train RC is small and it is 202 

an outstanding advantage of RC compared to the other neural network frameworks. 203 

 204 

In the training phase, we set the switch in the Figure 1 to the training configuration. Given a training 205 

data series {𝒖𝟎, 𝒖𝟏, … , 𝒖𝒏}, we can generate the reservoir state series {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏+𝟏} by equation 206 

(11) . By using the training data and reservoir state series, we can determine the 𝑾𝒐𝒖𝒕 matrix by ridge 207 

regression. We minimize the following square error function with respect to 𝑾𝒐𝒖𝒕: 208 

∑‖𝒖𝒌 − 𝑾𝒐𝒖𝒕𝒇(𝒓𝒌)‖2

𝑛

𝑖=1

+ 𝛽 ∙ 𝑡𝑟𝑎𝑐𝑒(𝑾𝒐𝒖𝒕𝑾𝒐𝒖𝒕
𝑻 ) (13) 209 

where ‖𝒙‖ = 𝑥𝑇𝑥 and 𝛽 is the ridge regression parameter (normally a small positive number). The 210 

optimal value can be determined analytically as follows: 211 

𝑾𝒐𝒖𝒕 = 𝑼𝑹𝑻 (𝑹𝑹𝑻 + 𝜷𝑰)−𝟏 (14) 212 

where 𝑰  is the 𝐷𝑟 × 𝐷𝑟  identity matrix and 𝑹, 𝑼  are the matrix whose 𝑘𝑡ℎ  column is the vector 213 

𝒇(𝒓𝒌), 𝒖𝒌, respectively. 214 
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 215 

Then, we can shift to the predicting phase. Before we predict with the network, we first need to “spin 216 

up” the reservoir state. The spin up process was done by giving the time series before the initial value 217 

{𝒖−𝒌, 𝒖−𝒌+𝟏, … , 𝒖−𝟏} to the network and calculate the reservoir state right before the beginning of the 218 

prediction via equation (11). After that, the output layer is connected to the input layer, and the network 219 

becomes recursive. In this configuration, the output value 𝒗𝒌 of equation (12) is used as the next 220 

input value 𝒖𝒌 of equation (11). Once we give the initial value 𝒖𝟎, the network will iterate equation 221 

(11) and (12) spontaneously, and the prediction will be yielded. 222 

 223 

Considering the real application, it is natural to assume that the observation data can only be used as 224 

the training data and the initial value for the RC prediction. In this paper we call this type of prediction 225 

“RC-Obs”. 226 

 227 

2.4 Combination of RC and LETKF 228 

As discussed so far and we will quantitatively discuss in the section 4, LETKF-Ext and RC-Obs have 229 

contrasting advantages and disadvantages. LETKF-Ext can accurately predict even if the observation 230 

is noisy and/or sparsely distributed, while RC-Obs is vulnerable to the imperfectness in observation. 231 

On the other hand, LETKF-Ext can be strongly affected by the model biases since the prediction of 232 
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LETKF-Ext depends only on the model after obtaining the initial condition, while RC-Obs has no 233 

dependence to the accuracy of the model as it only uses the observation data for training and prediction. 234 

 235 

Therefore, the combination of LETKF and RC has a potential to push the limit of these two individual 236 

prediction methods and realize accurate and robust prediction. The weakness of RC-Obs is that we 237 

can only use the observational data directly, which is inevitably sparse in the real application, although 238 

RC is vulnerable to this imperfectness. In our proposed method, we make RC learn the analysis time 239 

series generated by LETKF instead of directly learning observation data. Since LETKF’s analysis 240 

variables are of full grid, it is expected that we can efficiently train RC in our proposed method. We 241 

call the prediction by this method “RC-Anl”. 242 

 243 

Our proposed combination method is expected to predict more accurately than RC-Obs since the 244 

training data always exist in all the grid points, even if the observation is sparse. Also, especially if the 245 

model is substantially biased, the analysis time series generated by LETKF is more accurate than the 246 

model output itself. It means that RC-Anl is expected to be able to predict more accurately than 247 

LETKF-Ext. 248 

 249 

3. Experiment Design 250 
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To generate the Nature Run, L96 with 𝑚 = 8, 𝐹 = 8 was used, and it was numerically integrated by 251 

4th order Runge-Kutta method by time width Δ𝑡 = 0.005. Before calculating the Nature Run, the L96 252 

equation was integrated for 1440000 timesteps for spin up. In the following experiment, 𝐹 term in 253 

the model was changed to represent the model bias. 254 

 255 

The setting for LETKF was based on Miyoshi & Yamane (2007). In equation (8), each row of 256 

observation covariance 𝑹 were divided by the value w calculated as follows: 257 

𝑤(𝑟) = exp (
𝑟2

18
) (15) 262 

where 𝑟  is the distance between each observation point and each analyzed point. The shape of 258 

equation (8) differs by the analyzed grid points, so each row of 𝑤𝑘
𝑎  and �̃�𝑘

𝑎 should be calculated 259 

separately. In equation (10), a “covariance inflation factor”, which was set to 1.05 in our study, was 260 

multiplied to �̃�𝒌
𝒂 in each iteration. Ensemble size 𝑁𝑒 was set to 20. 261 

 263 

The configuration of RC used in this study was similar to Chattopadhyay et al. (2019), but was slightly 264 

modified. Parameter settings used in the RC experiments are shown in Table 1. The nonlinear 265 

transformation function for the output layer in equation (12) is as follows: 266 

𝑓(𝑟𝑖) = {
𝑟𝑖 (𝑖 is 𝑜𝑑𝑑)

𝑟𝑖−1 × 𝑟𝑖−2 (𝑖 is 𝑒𝑣𝑒𝑛)
(16) 267 

where 𝑟𝑖  is the 𝑖th element of 𝒓. In the prediction phase, we used the data for 100 timesteps before 268 
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the prediction initial time for the reservoir spin up. 269 

 270 

We implemented numerical experiments to investigate the performance of RC-Obs, LETKF-Ext and 271 

RC-Anl to predict L96 dynamics. First, we evaluated the performance of RC-Obs by comparing with 272 

LETKF-Ext under perfect observations (all the grid points are observed with no error) and quantified 273 

the effect of the observation imperfectness (i.e. observation error and spatio-temporal sparsity), to 274 

investigate the prediction skill of the stand-alone use of RC and LETKF. Second, we evaluated the 275 

performance of RC-Anl. We investigated the performance of RC-Anl and LETKF-Ext as the functions 276 

of the observation density and model biases. Three prediction frameworks are summarized in Table 2. 277 

 278 

In each experiment, we prepared 200000 timesteps of Nature Run. The first 100000 timesteps were 279 

used for the training of RC or for the spinning up of LETKF, and the rest of them were used for the 280 

evaluation of each method. Every prediction was repeated 100 times to avoid the effect of the 281 

heterogeneity of data. For the LETKF-Ext prediction, the analysis time series of all the evaluation data 282 

was firstly generated. Then, the analysis variables for one every 1000 timestep was taken as the initial 283 

conditions and total 100 prediction runs were performed. For the RC-Obs prediction, evaluation data 284 

were equally divided into 100 sets and the prediction was identically done for each set. For the RC-285 

Anl prediction, the analysis time series of training data were used for training, and the prediction was 286 
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performed using the same initial condition as LETKF-Ext. Each prediction set of LETKF-Ext, RC-287 

Obs, and RC-Anl corresponds to the same time range. 288 

 289 

The prediction accuracy of each method was evaluated by taking the average of RMSE of 100 sets for 290 

each timestep. We call this metric mean RMSE (mRMSE), and can be represented as follows: 291 

𝑚𝑅𝑀𝑆𝐸(𝑡) =
1

100
∑ √

1

𝑚
∑ (𝑢𝑗

(𝑖)
(𝑡) − 𝑥𝑗

(𝑖)
(𝑡))

2
𝑚

𝑗=1

100

𝑖=1

(17) 292 

where 𝑡 is the number of the steps elapsed from the prediction initial time, 𝑥𝑗
(𝑖)

(𝑡) is the 𝑗th nodal 293 

value of the 𝑖th prediction set at time 𝑡 and 𝑢𝑗
(𝑖)

(𝑡) is the corresponding value of Nature Run. Using 294 

this metric, we can see how the prediction accuracy is degraded as time elapses from initial time. 295 

 296 

4. Results 297 

Figure 2 shows the Hovmöller diagram of Nature Run, LETKF-Ext, and RC-Obs. Figure 2 also shows 298 

the difference between prediction and Nature Run, as well as the actual prediction result so that we 299 

can see how long we can keep the prediction accurate. The model and observation used for each 300 

prediction was perfect, that is, the model was the same as the one for Nature Run, and the observation 301 

was available for all the grid point and every timestep, with observation error 𝑒 = 0.01 (if it is set to 302 

0, LETKF does not work). Although both predictions are accurate in the short lead time, LETKF-Ext 303 

can accurately predict the state variables for the longer lead time than RC-Obs. If we have perfect 304 
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model and observations, the prediction skill of LETKF-Ext is better than RC-obs. 305 

 306 

Figure 3 shows the time variation of the 𝑚𝑅𝑀𝑆𝐸 (see equation (17)) of LETKF-Ext and RC-Obs. 307 

This figure clarifies the superiority of LETKF-Ext. The 𝑚𝑅𝑀𝑆𝐸 of LETKF-Ext was less than that 308 

of RC-Obs at all timesteps. 309 

 310 

Next, we evaluated the sensitivity of the prediction skill of both LETKF-Ext and RC-Obs to the 311 

imperfectness of the observations. Figure S1 and Figure S2 show the effect of the observation error 312 

and frequency on the prediction skill, respectively. Both methods showed a similar level of robustness 313 

for the change of the observation frequency and the observation error.  314 

 315 

However, if we reduce the number of the observed grid points, the prediction accuracy of RC-Obs 316 

becomes catastrophically worse while LETKF-Ext is robust to the reduced number of the observed 317 

grid points. Figures 4a and 4b show the sensitivity of the prediction accuracy of LETKF-Ext and RC-318 

Obs, respectively, to the number of observed grid points. Even though we can observe a small part of 319 

the system, the accuracy of LETKF-Ext changed only slightly. On the other hand, the accuracy of RC-320 

Obs gets substantially worse when we remove a single observed grid point. As assumed in the section 321 

2.4, we verified that RC-Obs is significantly sensitive to the observation sparsity. 322 
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 323 

We tested the prediction skill of our newly proposed method, RC-Anl, under imperfect models and 324 

sparse observations. Here, we used the observation error 𝑒 = 1.0. Figure 5 shows the change of the 325 

mRMSE time series of RC-Anl with the different number of observed grid points. It indicates that the 326 

vulnerability of the prediction accuracy to the change of the number of observed grid points, which is 327 

found in RC-Obs, no longer exists in RC-Anl. Although the prediction accuracy is lower than LETKF-328 

Ext (Figure 4a), our new method indicates a robustness to the observation sparsity and overcomes the 329 

limitation of the stand-alone RC.  330 

 331 

Moreover, when the model used in LETKF is biased, RC-Anl outperforms LETKF-Ext. Figure 6 332 

shows the change of the mRMSE time series when changing the model biases. The number of the 333 

observed points was set to 4. The 𝐹 term in equation (1) was changed from the true value 8 (the 𝐹 334 

value of the model for Nature Run) as the model bias, and the accuracy of LETKF-Ext and RC-Anl is 335 

plotted. The accuracy of LETKF-Ext was slightly better than that of RC-Anl when the model was not 336 

biased (𝐹 = 8 ; green line). However, when the bias is large (e.g. 𝐹 = 10 ; yellow line), RC-Anl 337 

showed the better prediction accuracy. 338 

 339 

We confirmed this result by comparing the mRMSE value of RC-Anl and LETKF-Ext at the specific 340 
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forecast lead-time. Figure 7 shows the value of 𝑚𝑅𝑀𝑆𝐸(80) (see equation (17)) as the function of 341 

the value of the 𝐹 term. Both two lines that shows the skill of RC-Anl (blue) and LETKF-Ext (red) 342 

are convex downward and have a minimum at 𝐹 = 8, meaning that the accuracy of both prediction 343 

methods are the best when the model is not biased. In addition, as long as 𝐹 value is in the interval 344 

[7.5, 8.5], LETKF-Ext has the better accuracy than RC-Anl. However, if the model bias become larger 345 

than that, RC-Anl becomes more accurate than LETKF-Ext. As the bias increases, the difference 346 

between the 𝑚𝑅𝑀𝑆𝐸(80) of two methods becomes larger, and the superiority of RC-Anl becomes 347 

more obvious. We found that RC-Anl can predict more accurately than LETKF-Ext when the model 348 

is biased. 349 

 350 

We also checked the robustness for the training data size. Figure S3 shows the change of the accuracy 351 

of RC-Anl by changing the size of training data from 100000 to 1000 timesteps. We confirmed that 352 

the prediction accuracy did not change until the size was reduced to 25000 timesteps. Although we 353 

have used a large size of training data (100000 timesteps; 68 model years) so far, the results are robust 354 

to the reduction of the size of the training data.  355 

 356 

5. Discussion 357 

By comparing the prediction skill of RC-Obs and LETKF-Ext, we confirmed that RC-Obs can predict 358 
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with accuracy comparable to LETKF-Ext, if we have perfect observations. This result is consistent 359 

with Chattopadhyay et al. (2019), Pathak et al. (2017) or P. R. Vlachas et al. (2020), and we can expect 360 

that RC has a potential to predict various kinds of spatio-temporal chaotic systems.  361 

 362 

However, Vlachas et al. (2020) revealed that the prediction accuracy of RC is substantially degraded 363 

when the observed grid points are reduced, compared to other machine learning techniques such as 364 

LSTM. Our result is consistent with their study, and we found that the prediction accuracy of RC-Obs 365 

was significantly degraded by just removing one observation grid point. In contrast, Chattopadhyay et 366 

al. (2019) showed that RC can predict the multi-scale chaotic system correctly even though only the 367 

largest scale dynamics is observed. Comparing these results, we can suggest that the states in the scale 368 

of dominant dynamics should be observed almost perfectly to accurately predict the future state by 369 

RC. 370 

 371 

Therefore, when we use RC to predict spatio-temporal chaotic systems with sparse observation data, 372 

we need to interpolate them to generate the appropriate training data. However, the interpolated data 373 

inevitably includes errors even if the observation data itself has no error, so it should be verified that 374 

RC can predict accurately by training data with some errors. Previous works such as Chattopadhyay 375 

et al., 2019, Pathak et al., 2017, or P. R. Vlachas et al., 2020 have not considered the impact of error 376 

https://doi.org/10.5194/gmd-2020-211
Preprint. Discussion started: 21 August 2020
c© Author(s) 2020. CC BY 4.0 License.



 22 

in the training data. We found that the prediction accuracy of RC degrades as the error in training data 377 

grows, but the degradation rate is not so large (if all the training data of all the grid points are obtained). 378 

We can expect from this result that RC trained with the interpolated observation data can predict 379 

accurately to some extent, but the interpolated data should be as accurate as possible. 380 

 381 

In this study, LETKF was used to prepare the training data for RC, since LETKF can interpolate the 382 

observations and reduce their error at the same time. We showed that our proposed approach correctly 383 

works. Brajard et al. (2020) also made Convolutional Neural Network (CNN) learn the dynamics from 384 

sparse observation data and successfully predict the dynamics of the L96 model. However, as 385 

mentioned in the introduction section, Brajard et al. (2020) needed to iterate the learning and data 386 

assimilation until they converge, because it replaced the model used in data assimilation with CNN. 387 

Although their model-free method has an advantage that it was not affected by the process-based 388 

model’s reproducibility of the phenomena, it is computationally expensive and probably infeasible in 389 

many real-world problems. Contrary, we need to train RC just one time, because we use the process-390 

based model (i.e. data assimilation method) to prepare the training data. We overcome the problem of 391 

computational feasibility. Note also that the computational cost to train RC is much cheaper than the 392 

other neural networks. 393 

 394 
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The good performance of our proposed method supports the suggestion of Dueben & Bauer (2018), 395 

in which machine learning should be applied to the analysis data generated by data assimilation 396 

methods as the first step of the application of machine learning to weather prediction. As Weyn et al. 397 

(2019) did, we successfully trained the machine learning model with the analysis data.  398 

 399 

Most importantly, we also found that the prediction by RC-Anl is more robust to the model biases than 400 

the extended forecast by LETKF (i.e. LETKF-Ext). This result suggests that our method can be 401 

beneficial in various real problems, as the model in real applications inevitably contains some biases. 402 

Pathak, Wikner, et al. (2018) developed the hybrid prediction system of RC and a biased model. 403 

Although Pathak, Wikner et al. (2018) successfully predicted the spatio-temporal chaotic systems 404 

using the biased models, they needed perfect observations to train their RC. The advantage of our 405 

proposed method is that we allow both models and observation networks to be imperfect. 406 

 407 

Our study was implemented with the 8-dimensional L96 system, and it is unclear whether our 408 

proposed method is applicable to other spatio-temporal chaotic systems with larger state spaces, 409 

including the real NWP models. However, in previous works, RC has been successfully applied to 410 

many other large chaotic systems. Especially, Pathak, Hunt, et al. (2018) indicated that RC can be 411 

applied to predict the dynamics of substantially high dimensional Kuramoto-Sivashinski equation 412 
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using the "reservoir parallelization”. They divided the state space to some local groups and used 413 

different reservoirs for each local group. As we did not change the RC architecture itself, our method 414 

also has a potential to predict other high dimensional spatio-temporal chaotic systems by adopting this 415 

parallelization strategy.  416 

 417 

In NWP problems, it is often the case that homogenous observation data of high resolution are not 418 

available over a wide range of time and space, which can be an obstacle to applying machine learning 419 

to NWP tasks (Dueben & Bauer, 2018). We revealed that RC is robust for the temporal sparsity of 420 

observations, and RC can be trained with relatively small training data sets. These results imply that 421 

our proposed method can be applicable to various realistic problems.  422 

 423 

 424 

6. Conclusion 425 

The prediction skills of the extended forecast with LETKF (LETKF-Ext), RC that learned the 426 

observation data (RC-Obs), and RC that learned the LETKF analysis data (RC-Anl) were evaluated 427 

under imperfect models and observations, using the Lorenz 96 model. We found that the prediction by 428 

RC-Obs is substantially vulnerable to the sparsity of the observation network. Our proposed method, 429 

RC-Anl, can overcome this vulnerability. In addition, RC-Anl could predict more accurately than 430 
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LETKF-Ext when the process-based model is biased. Our new method is robust to the imperfectness 431 

of both models and observations so that it is feasible to apply it to the real NWP problem. Further 432 

studies on more complicated models or operational atmospheric models are expected. 433 

 434 

Code Availability 435 

The source code for RC and Lorenz96 model is available at: 436 

https://doi.org/10.5281/zenodo.3907291, and for LETKF at: 437 

https://github.com/takemasa-miyoshi/letkf 438 
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Table 1. Parameter values of RC used in each experiment 521 

Parameter Description Value 

𝐷𝑟 reservoir size 5000 

𝑎 Input matrix scale 0.5 

𝑑 adjacency matrix density 0.0006 

𝜌 adjacency matrix spectral radius 0.1 

𝛽 ridge regression parameter 0.0001 

   

 522 

Table 2. Summary of three prediction frameworks 523 

Name Initial Value Model for prediction 

LETKF-Ext LETKF analysis the model used in LETKF 

RC-Obs observation RC trained with observation 

RC-Anl LETKF analysis RC trained with LETKF analysis 

   

 524 

 525 

Figure 1. The conceptual diagram of reservoir computing architecture. The network consists of an 526 

input layer, a hidden layer called reservoir, and an output layer. 527 
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 528 

Figure 2. The Hovmöller diagram of (a) Nature Run, (b) Prediction of LETKF-Ext, (c) difference of 529 

(a) and (b), (d) Prediction of RC-Obs and (e) difference of (a) and (d). Horizontal axis shows the 530 

timesteps and vertical axis shows the nodal number. Value at each timestep and node is represented by 531 

the color. 532 

Figure 3. The mRMSE time series of the predictions of LETKF-Ext(red) and RC-Obs(blue) with 533 

perfect observation. Horizontal axis shows the timestep and vertical shows the value of mRMSE. 534 
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 535 

Figure 4. The mRMSE time series of the predictions of (a)LETKF-Ext and (b)RC-Obs with spatially 536 

sparse observation. Each color corresponds to the number of the observation points. 537 

Figure 5. The same as figure4, for the RC-Anl prediction. 538 

Figure 6. The mRMSE time series of the predictions of (a)LETKF-Ext and (b)RC-Anl with biased 539 

model. Each color corresponds to each value of F term. 540 

(a) (b)

(a) (b)
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 541 

 542 

Figure 7. The mRMSE(80) of the predictions of LETKF-Ext(red) and RC-Anl(blue) for each model 543 

bias. Horizontal axis shows the value of the force parameter of equation (1) (8 is the true value) and 544 

vertical axis shows the value of mRMSE. 545 

 546 
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